

MADE IN IR

Used Oil Re-Refining

OF BLACK

GOLD

MTSP

- * Reputed Engineering company established in 1992
- * Well equipped manufacturing facilities in Iran.
- * Engaged in execution of turnkey projects
- * Highly professional set-up
- * Skilled engineering Staff

Wide Spectrum of Activities

- Engineering
- Procurement
- Construction
- Assembly
- Erection
- Commissioning

- Services
 - Feasibility Study
 - Environmental Impact Assessment
 - Process Engineering
 - Detailed Design

Used lube oil which can be processed

- * Used lube oil includes
 - Motor Oil
 - Cutting fluids
 - Hydraulic oils
 - Turbine oil
 - Transformer oil
 - Machine oils
 - Air compressor oils
 - Slide-way lubes
 - Gear oils

Composition of Used Oil

- * Base Oil
 - Main component of Lube oil, does not 'wear out'
 - Simply becomes contaminated
- Depleted Additives
 - Additives lose their performance characteristics
- * Contaminants
 - Water: Fuel burns to CO2 and H2O. When an engine is cold the water created can pass through to the lube oil
 - Fuel: Un-burnt petrol / diesel passes through to the lube oil during engine start-ups

Contaminants in Used Oil

Carbon: Forms as a result of incomplete combustion

when an engine is warming up and passes

through to the lube oil

Dust: Small particles pass into the engine oil

through the air breather

Metals: Due to normal engine wear

Oxidation Products: Additive chemicals at elevated

temperatures can oxidize forming corrosive

acids

The typical Analysis of waste lube oil.

Appearance	Viscous liquid with	
Color	impurities.	
Specific gravity (D-1298)	Black	
Water content (% in Emulsion w/w)(D-	0.850 to 0.900	
4006)	5 TO 7%	
Flash Point, °C (D-92)	100 to 190	
Viscosity, cst At 40 °C	70 to 110	
At 100 °C (D-445)	9.5 TO 12.5	
Ash sulphated, % w/w (D-482)	1.5 to 3.0	
Pentane insoluble, % w/w (D-893)	1.0	
Total acid no. mg KOH/gm	1.0	

HOS-1844

Available Refining Processes

- Propane solvent extraction
- Full hydrogenation
- Distillation
 - Simple vacuum distillation
 - Tin of following film evaporator
 - Wipe film evaporator

Comparison of Processes

Wiped Film Molecular Distillation	Hydrogenation	Propane Solvent Extraction	Parameter
Medium	Very High	Very High	Capital Investment
Low	High	High	Cost Of Production
Low	High	High	Process Hazards
Automatic	Automatic	Automatic	Type Of Operation
Continuous	Continuous	Continuous	Type Of Process
3-5 % Clay or Hydro finishing	Nil	3-5 % Clay or Hydro finishing	Finishing Requirement
75-77%	65-67%	65-68%	Lube Oil Yield
Approved	Approved	Approved	EIA Approval

Re-refining Process

- * MTSP process
- * High Vacuum Molecular Distillation Technology
- * Developed by "MTSP"
- Efficient process with maximum output
- * Fully automatic, continuous process

The design specifications:

The plant designed based on typical feed characteristics as above. Input: used oil of mixed hydrocarbons containing:

- ~ 5 % Water
- ~ 5 15% light ends [gasoline, aromatics]
- ~ 5 15% Diesel, Kerosene
- ~ 10 80% long-chain hydrocarbons
- ~ 5 30% residual solids and Asphaltenes.


Output specifications:

From Skid -1:

- ~ 5% Water containing traces [< 2%] of hydrocarbons;
- ~ 5%– 10 % Lights [Naphtha, gasoline, Kerosene, Diesel]

From Skid 2 and 3:

- ~ 35%-40% medium chain hydrocarbons (neutral 100 300)
- ~ 35%-40% longer chain hydrocarbons (neutral 300 500)
- ~ 10%-15% Asphalt extender [containing solids and asphaltenes]

Process Stages

Stage 1: De-Hydration and De-Gas oil

Stage 2-A: TFE #1 to Process Lube oil grade SN150

Stage 2-B: TFE #2 to Process Lube oil grade SN200

Stage 2-C: TFE #3 to Process Lube oil grade SN300/400

Stage 3-A: Hydrogenation - (for API Group II end product)

Stage 3-B: Activated Clay Treatment - (for API Group I end product)

Stage 4: Pollution Control to treat gaseous emissions

Stage 5: Effluent Water Treatment to treat the water from de-hydration step

Stage 6: Packaging or Bulk dispatch

Stage Four: Scrubber

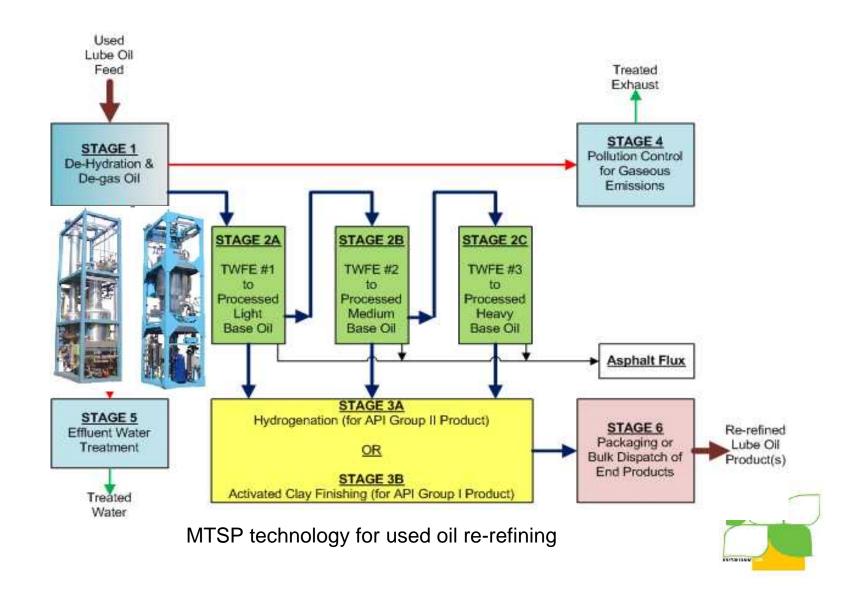
* Step 1:

Front End exhaust, Vacuum exhaust of the first distillation skid, second distillation skid along with vents of all storage tanks are connected to the scrubber

* Step 2:

These Un condensed gases will be sucked due to the venturi effect of the scrubber and diluted and washed by caustic solution before they pass through Thermal Oxidizer.

HOSPING IN


Stage Five: Clay finishing

- * Final Process Step
- * The Process Is Based on Using Activated Clay for Polishing Distilled Used Lube Oil

PROCESS FLO DIGRAM

Output product specifications:

3.3	Viscosity @ 40 deg cSt
60 – 70	Cetane
<10	Flash Point deg C – closed cup
3	Colour
0.869	Density @ 15 deg C, kg/l

Light Lube

~34.0	Viscosity @ 40 deg cSt	
>180 C	Flash Point deg C	
~ 0.80	Density @ 15 deg C, kg/l	
Max. 3	Colour	

Heavy Lube

~90 -110	Viscosity @ 40 deg cSt
>230 C	Flash Point deg C
~ 0.88	Density @ 15 deg C
Max. 3	Colour

The Processed Output

- * 77% of Base Oil (SN 300 & SN 400)
- * 4% Diesel, Naphtha & Light Oil
- * 14% of residue (Asphalt)
- * 4% water
- * 1% process losses

 MTSP technology for used oil re-refining

Process Guarantees

- * Guaranteed Throughput
- * Asphalt Viscosity @ 30°C, min > 1000cst
- * Guaranteed 75% yield of base Oil
- * Maximum Asphalt 15%
- * Fuel Oil consumption, 0.05 Kg/Kg WLO

Group I

Group II

Advantages Of TFE Process

- * Sludge free & 100% Environment friendly
- * Highly efficient latest Technology
- * PLC Automated, with SCADA System
- * Skid mounted Reduces set-up cost and time
- * Modular construction
- * Handles variety of waste lube oils (WLO)

Available Plant Capacity

Standard Plant Capacities to Process Used Lube Oils

Model	LPH (Liters/Hour)	MTY (Metric Tons/Year)	GPH (Gallons/Hour)	MMGPY (*) (Million Gallons/Year)
UOR-750	750	5,000	200	1.5
UOR-1000	1000	6,500	250	1.9
UOR-1500	1500	10,000	400	3.0
UOR-2000	2000	13,000	500	3.8
UOR-3000	3000	20,000	800	6.0
UOR-4500	4500	30,000	1,200	8.9
UOR-7500	7500	50,000	2,000	14.9
UOR-10000	10000	65,000	2,500	18.6

^{*} Values based on a conservative assumption of 310 operating days per year.

Time-Schedule of the project:

- *4 to 5 Months for shipment
- *1 month shipping time
- *1 month for commissioning.
- *1 month contingency allowance
- *Total time from issuing the P.O with advance to commissioning of plant -8 months

Key Equipments of the Process

Equipment Description	Country of Origin
Wiped Film Evaporator	Iran
Vacuum Pumps	USA
Vacuum Booster	USA
Viking Pumps	USA
High Temperature Pumps	Iran
Magnetic Filter	Iran
Phase Sep Coalescer	Iran
Vapor Thermal Oxidation	Iran
Thermic fluid heater	Iran
Compressor	Iran
Cooling Tower	Iran
Mechanical Seals	Iran
Switchgear	Iran
Control Panel	Iran

HOSBIN .

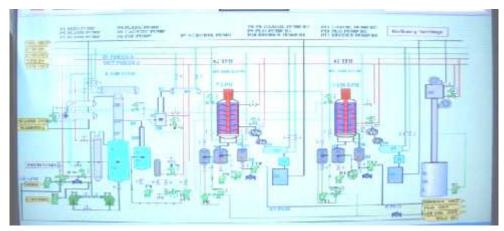
Mechanical Features

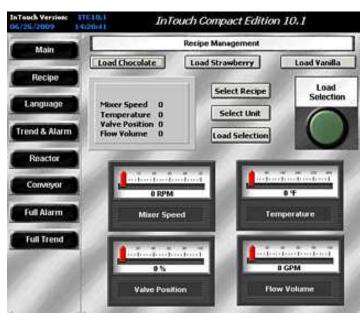
- Robust Construction Enhances the life of the plant
- Skid Mounted Design enables complete assembly and pre-testing of the plant at our factory prior to despatch
- Modular Construction of Plant enables ease of capacity enhancement by adding different modules of skids

Electrical Features

 Use of Flameproof Electrical Enclosures and junction box makes the plant a refinery in the true sense.

 Use of most reputed electrical equipments and control parts from around the world


Electrical Control

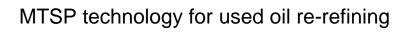


SCADA Based Technology

SCADA allows on line visual data analysis of various critical parameters of the processes. This helps in continuous monitoring of the entire plant process at a single point.

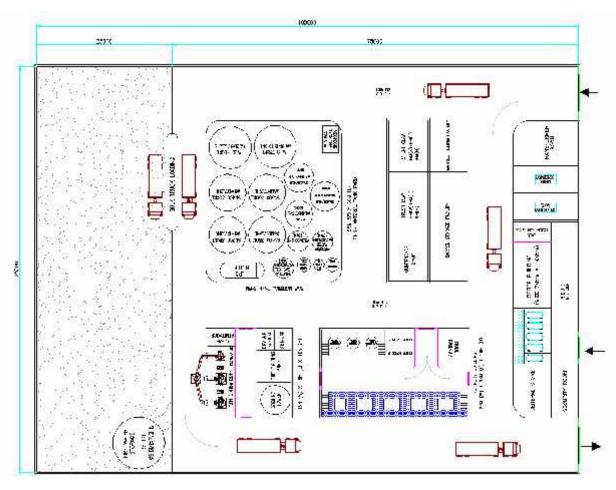
Control System

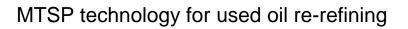
- * The levels in raw material & Product tanks
- * Step By Step Progression Of Process



- * Precise Control Of Temperature & flow by Various PID Loops
- * Cascading Effect Of Interlocks & PID For Higher Accuracy
- * Emergency Shut Down or Manual Shut Down carried out by PLC
- * This system also generates periodical maintenance alarms

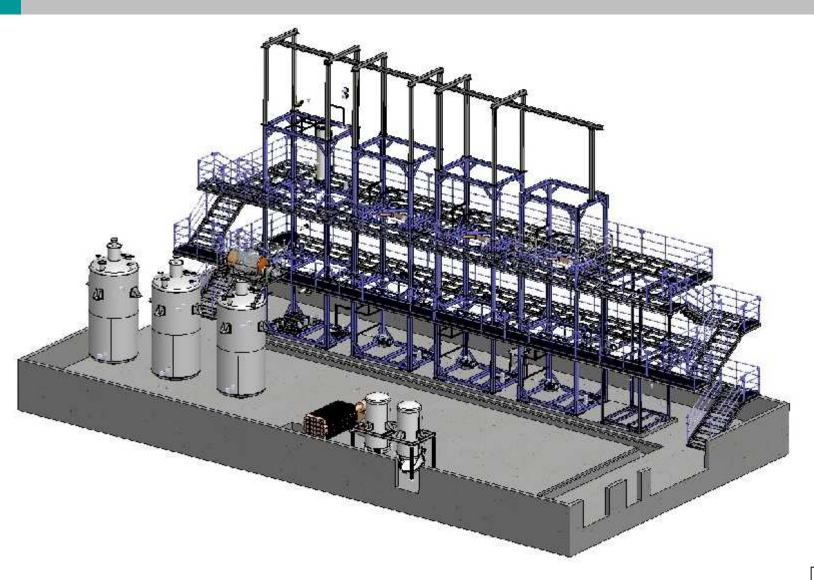
Documentation

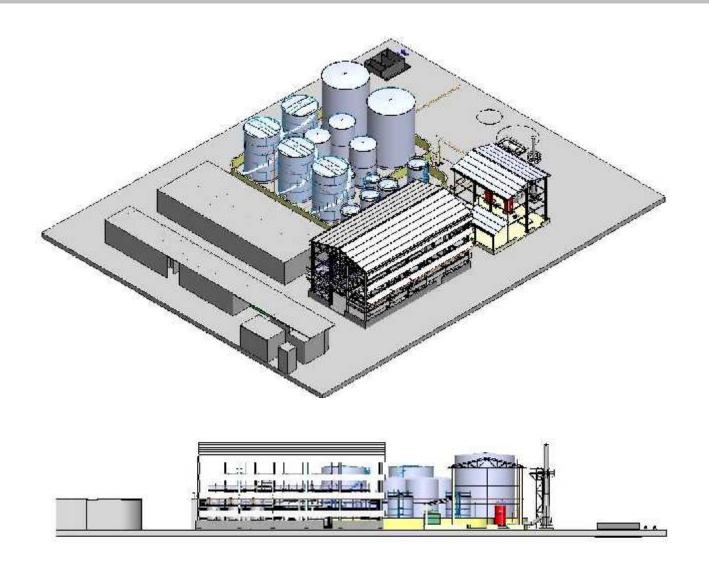

- * Plot plans and General Arrangement and PFD's
- * Material and Heat Balances
- * Equipment Data Sheets and Specification Sheets
- * P&I's and Piping Specs and Layout drawings
- * Package Units specifications
- * Instrumentation Drawings
- * Electrical one line diagrams, Electrical drawings
- * Insulation Painting specifications
- * Operating manuals
- * Mechanical catalogue.



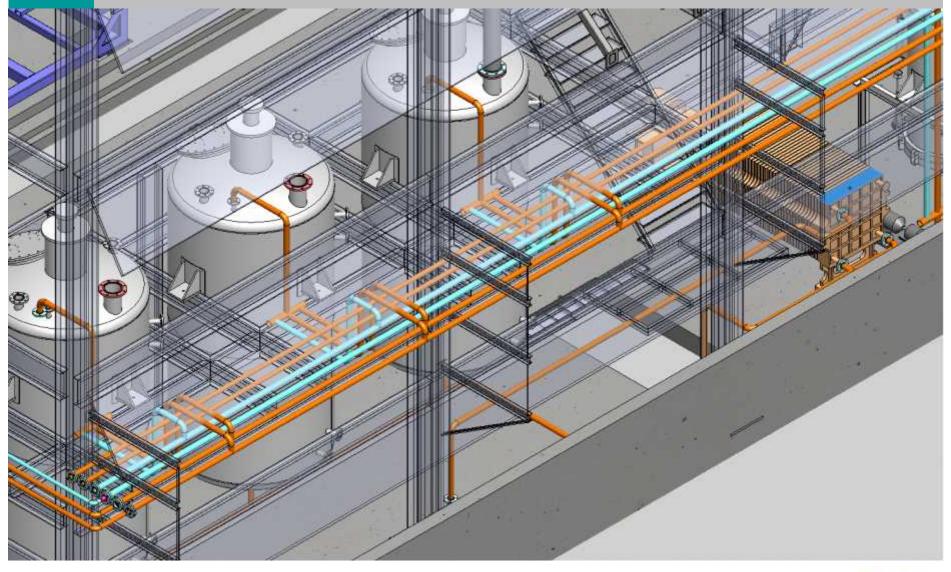


Typical plot plan




Complete refinery model

Complete refinery model



Complete refinery model

Accurate and timely procurement of bought-out



REFINERY

Proven used oil refining process

Specially designed MTSP Evaporators

Designed with the latest 3D modeling tools

Robust utilities for used oil refining

End-to-end solution for used oil refining

Complete engineering package for used oil refining

THANK YOU! WWW.BAZYAFTSABZ.COM

info@bazyaftsabz.com

